Sila1.aircraft Россия                   
 

Анатомия самолёта типа STOL:
Проектирование современного самолёта с коротким взлётом и посадкой.

"Форма определяется функцией"
Крис Хайнц

Мир действительно кажется сегодня меньше, большей частью благодаря авиации. Во многих из нас это вызвало интерес увидеть то, что вокруг нас, а не просто как можно быстрее домчаться до места назначения. Хотя среди любителей авиации, конечно, встречаются те, кто отдаёт предпочтение скоростным самолётам, я думаю, что большинство из нас прежде всего побуждает продолжать полёты большое эмоциональное возбуждение, удовольствие и упоение от управления своим собственным самолётом. Мы хотели бы, чтобы летательный аппарат давал нам возможность пересечь всю страну, но мы хотели бы также увидеть и посетить местность, над которой мы летим.

Популярность самолётов типа Piper Cube длилась годы и была обусловлена не только ностальгией, но и тем, что эти самолёты - отличная забава, они легко управляются, хорошо адаптированы к взлёту и посадке на травяных полях (большинство классических самолётов были разработаны в период, когда взлётно-посадочные полосы с покрытием были редки). Однако в силу их возраста, многие из этих конструкций не имеют современных усовершенствований, которые большинство из нас считает само собой разумеющимися, таких как современное электрооборудование, расположенные рядом сидения, цельнометаллическая конструкция, управляемое переднее колесо шасси и т. д. И, конечно, классические летательные аппараты становятся редкими и нуждаются в существенном техническом обслуживании, чтобы оставаться на лету.

Большей частью мы, пилоты-любители, уже сразу оказываемся там, где хотим быть, когда поднимаемся в воздух, и мы поэтому получаем больше всего удовольствия от полёта на самолёте, на котором легко и приятно летать, который предоставляет комфорт и хороший обзор и имеет низкие эксплуатационные расходы (если кого-то волнуют мили за галлон, то мы больше хотим низких почасовых эксплуатационных расходов). Когда мы летим над страной, сам процесс путешествия также важен (если не важнее), как и прибытие на место назначения. STOL (Shot Take- Off and Landing), самолёт с коротким взлётом и посадкой, предоставляет нам возможность посетить больше мест, особенно в труднодоступных районах, где нашей взлётно-посадочной полосой становится мир (это также является важной составляющей безопасности). При хорошей грузоподъёмности мы способны перевозить необходимый багаж (туристическое снаряжение), возможность установки поплавков даёт нам дополнительную возможность и свободу использовать самолёт на воде. И конечно, конструкция STOL предоставляет нам возможность совершать полёты буквально чуть ли не из собственного огорода. Самолёты типа STOL завоёвывают популярность среди пилотов-любителей точно так же, как когда-то внедорожники завоевали её среди автомобилистов, благодаря своей проходимости и неприхотливости.

STOL CH 801
S T O L   C H   8 0 1

Сверхлёгкий самолёт короткого взлёта и посадки предоставляет лёгкую и недорогую возможность для любительских полётов, и популярность сверхлегких и легких самолётов на базе китов доказала потребность в «низком и медленном» полёте. Однако сверхлёгкие самолёты, при всей их привлекательности, имеют много ограничений: относительно низкую скорость, ограничения по скорости ветра, трудности с достижением достаточной грузоподъёмности и уровня комфорта. Вот лишь некоторые из присущих им ограничений.

Сегодня, благодаря накопленным в мировой науке на протяжении более столетия знаниям об аэродинамике, конструкционной прочности, о методах борьбы с различными нежелательными явлениями (как, например, флаттер), эргономике, а также в связи с наличием современных мощных, надёжных и лёгких двигателей почти каждый достаточно любознательный человек мог бы относительно легко изучить вышеописанную область и сконструировать лёгкий самолёт, способный перевозить от двух до четырёх человек.

Как профессиональный конструктор лёгких самолётов и инженер я сделал именно это довольно много раз. В середине восьмидесятых я решил сконструировать лёгкий кит, который соединял бы преимущества сверхлёгкого самолёта с характеристиками современного полноразмерного. Так я сконструировал STOL CH 701: Необходимо было достичь возможности максимально короткого и грубого взлёта и посадки, приемлемых крейсерских характеристик, хорошей устойчивости по отношению к боковому ветру, отличной видимости, удобства расположения экипажа (что достигалось путём расположения сидений рядом). Надёжный цельнометаллический корпус обеспечил возможность лёгкой постройки и технического обслуживания. Конструкция STOL CH 701 имела успех (более 400 самолётов типа STOL CH 701 летают в настоящее время), и я впоследствии разработал практичную четырехместную версию этого самолёта - STOL CH 801 (представленную в 1998 году). А в 2008 году, в связи с появлением новой категории «спортивный пилот» (Sport Pilot), был представлен двухместный STOL CH 750, который отличается большей кабиной, чем исходный 701- й, а также новыми возможностями для выбора двигателя.

Мои конструкции самолётов STOL иногда называли «уродливыми» из-за их непривычной формы. Но как бы там ни было, форма определяется функцией, и при внимательном изучении уникальных очертаний этих самолётов становится заметна красота, определяющая свойственные им исключительные аэродинамические и конструкционные свойства. Далее следует пояснение базовой конструктивной концепции, которую я применил при разработке моих самолётов STOL:

МОЩНОСТЬ

Увеличение мощности существующего самолёта - самый простой путь достижения возможности короткого взлёта (при достаточной мощности любой самолёт взлетит на короткой дистанции). Но это требует большего количества топлива для обеспечения требуемой продолжительности полёта и является дорогим, тяжеловесным и неэффективным решением. Такой самолёт не обеспечивает также хороший медленный полёт и грузоподъёмность из-за большего веса двигателя и топлива. Мой опыт подсказывает, что требуется от 60 до 100 лс для двухместного самолёта и от 150 до 200 лс для четырёхместного при загрузке в 1000 фунтов (около 450 кг*). Как авиаконструктор и строитель (а не производитель двигателей), я проектировал самолёт для существующих стандартных легкодоступных двигателей. Для максимальной универсальности и удержания расходов на низком уровне кит самолёта должен быть сконструирован так, чтобы он мог быть приспособлен к различным типам двигателей. Тогда владелец самолёта сможет выбирать между существующими и новыми силовыми установками.

STOL CH 750
S T O L   C H   7 5 0

КРЫЛО

Чтобы отвечать своему предназначению, самолёт STOL должен иметь возможность летать на очень низких скоростях и при этом иметь достаточно хорошие крейсерские характеристики. Поэтому следующий большой вызов - сконструировать крыло с высоким коэффициентом подъёмной силы, чтобы крыло имело как можно меньшую площадь, но при этом обеспечивало максимально низкую скорость взлёта и посадки. Относительно короткое крыло делает более лёгким управление самолётом на земле, особенно вне аэродромов, при наличии наземных помех, и требуют меньше места в ангаре. При этом их легче построить и они прочнее (меньший вес при меньших размерах крыла).

Отрыв воздушного потока от крыла происходит при максимальном коэффициенте подъёмной силы, когда поток не может больше обтекать носок профиля крыла и отделяется от верхней поверхности крыла.

Рис. 1 - Отрыв воздушного потока от поверхности крыла
Рис. 1 – Отрыв воздушного потока от поверхности крыла

Чтобы отодвинуть отрыв потока до большего значения коэффициента подъёмной силы, многие самолёты оснащаются закрылками (отклоняемыми поверхностями, укреплёнными на задней кромке крыла). Также в некоторых конструкциях используются предкрылки (укреплённые на передней кромке крыла), чтобы уменьшить скорость сваливания. Следующая диаграмма показывает эффект от использования закрылков и предкрылков для повышения коэффициента подъёмной силы крыла.

 Рис. 2 - Зависимость коэффициента подъёмной силы от угла атаки
Рис. 2 – Зависимость коэффициента подъёмной силы от угла атаки

Таким образом, коэффициент подъёмной силы может быть фактически удвоен при помощи простых приспособлений (закрылков и предкрылков), если они простираются на весь размах крыла.

ПРЕДКРЫЛКИ

Предкрылки на передней кромке крыла предотвращают сваливание до достижения порядка 30-градусов угла атаки, захватывая воздух снизу, где щелевое отверстие большое (рис.3), увеличивая скорость воздуха в сужающемся канале (эффект Вентури) и направляя этот быстрый воздух по касательной на верхнюю поверхность крыла через значительно меньшее верхнее щелевое отверстие. Такое “протягивание” воздуха вокруг передней поверхности крыла приостанавливает сваливание до много большего угла атаки и коэффициента подъёмной силы. Недостаток предкрылков состоит в том, что воздух, ускоренный в щелевом канале, требует для своего проталкивания дополнительной энергии, что означает более высокое лобовое сопротивление. Поскольку большая подъёмная сила необходима только при медленном полёте (взлёт, набор высоты, заход на посадку и приземление), конструктор подвергается искушению использовать выдвижное устройство, которое бы складывалось на больших скоростях, чтобы уменьшить лобовое сопротивление.

Рис. 3 - Предкрылки
Рис. 3 – Предкрылки

Это может быть сделано различными способами: предкрылки могут быть смонтированы на роликовых направляющих так, что при большем угле атаки они автоматически вытягиваются потоком воздуха вокруг передней кромки крыла, а при крейсерской скорости (при меньшем угле атаки) втягиваются обратно. Это относительно простая система, несложная для конструирования, но она имеет один большой недостаток: в ветреную погоду может быть вытянут только один предкрылок, а другой останется втянутым, потенциально создавая значительную проблему для пилота, которому потребуется весь расход элеронов только для того, чтобы удержать самолёт!

Этот недостаток можно устранить, механически соединив правый и левый предкрылок, чтобы предотвратить асимметричное выдвижение. Однако создание такой конструкции сложнее и требует более сложного подхода. При этом достигаемый эффект от такой системы должен быть достаточно большим, чтобы оправдать компромисс в виде дополнительного веса самого устройства (не говоря о стоимости и сложности). Другой подход, управляемая пилотом система выдвижения предкрылков, имеет всё те же недостатки в виде веса и сложности.

Рис. 4 - Соотношение подъёмной силы и лобового сопротивления крыла с фиксированными предкрылками
Рис. 4 – Соотношение подъёмной силы и лобового сопротивления крыла с фиксированными предкрылками

Но существует простое решение: рост лобового сопротивления, созданного щелевым отверстием, зависит от объёма воздуха, проходящего через это отверстие, который различен для разных этапов полёта. При взлёте и посадке требуется максимальная подъёмная сила, а при крейсерском полёте - минимальное лобовое сопротивление. При уравнивании давления воздуха на верхней и нижней поверхности в передней части крыла, где располагаются предкрылки, в крейсерском режиме поток воздуха не проходит через щелевое отверстие, поэтому нет потерь энергии (и дополнительного лобового сопротивления). Уравнивание давления воздуха в крейсерском режиме легко достигается при помощи небольшого загиба задней кромки вверх. Рис 4 иллюстрирует соотношение коэффициента подъёмной силы и лобового сопротивления при такой конструкции крыла.

Приведённая диаграмма показывает, что крыло с фиксированными предкрылками и поднятой задней кромкой является оптимальным решением для медленного полёта, где необходима большая подъёмная сила, и имеет лишь незначительно увеличенное лобовое сопротивление при крейсерском полёте, являясь при этом относительно лёгким, благодаря отсутствию подвижных частей. Заметным недостатком является относительно небольшой диапазон малых сопротивлений, что означает узкий диапазон экономичных скоростей для дальнего полёта, но в общем, такая конфигурация обеспечивает самую оптимальную конструкцию крыла для самолёта типа STOL.

Таким образом, я выбрал такую фиксированную конфигурацию предкрылков для двухместного STOL CH 701 и нового четырехместного STOL CH 801. При всей своей лёгкости, крыло такой конструкции имеет очень высокий коэффициент подъёмной силы, что делает его очень надёжным, простым и экономичным элементом этих двух разработок.

Кроме того, чтобы ещё больше увеличить подъёмную силу, я использовал относительно большую хорду крыла. Большая хорда крыла в сочетании с относительно коротким размахом также даёт максимальную прочность и лёгкий вес. Дополнительно, крыло с постоянной хордой по сравнению с сужающимся более легко в постройке.

ЗАКОНЦОВКИ КРЫЛА

Я уже долгое время утверждаю, что законцовки Хорнера являются оптимальными для большинства конструкций лёгких самолётов, поскольку они повышают эффективный размах крыла на величину от 8” до более фута (20 - более 30 см*) без утяжеления конструкции. Как мы знаем, давление на нижней поверхности крыла больше, чем на верхней, эта разница в давлении и создаёт подъёмную силу, которая делает полёт возможным. У конца крыла воздух повышенного давления на нижней поверхности «чувствует» близкую область пониженного давления, на верхней поверхности, прямо за концом крыла, и устремляется туда, чтобы уравнять давление, создавая вторичный поток воздуха вокруг конца крыла, как показано внизу. Этот поток генерирует вихрь, продолжающийся позади крыла.

Рис. 5 - Вихрь у законцовки крыла
Рис. 5 – Вихрь у законцовки крыла

При закруглённых или прямоугольных концах крыла вихревое обтекание происходит вблизи конца крыла, как показано выше.

При загнутых вверх или вниз концах крыла вихрь выталкивается дальше от конца крыла. Загнутые вниз концы крыла часто встречаются в конструкциях самолётов STOL, но они увеличивают вес, так как должны быть “добавлены” к крылу.

Рис. 6 - Загнутые вверх и вниз законцовки крыла
Рис. 6 – Загнутые вверх и вниз законцовки крыла

Если поверхность законцовки крыла скошена под углом в 45 градусов с небольшим закруглением снизу и относительно острой кромкой вверху, поток воздуха, выходящий из под нижней поверхности, не может обогнуть острую верхнюю кромку и отталкивается в сторону.

Рис. 7 - Законцовки крыла Хорнера
Рис. 7 – Законцовки крыла Хорнера

Лётные качества самолёта зависят от расстояния от левого до правого концевого вихря (эффективный размах крыла), а не от фактически измеренного геометрического размаха крыла. Законцовки Хорнера обеспечивают наибольший эффективный размах для заданного геометрического размаха и веса крыла.

ОРГАНЫ УПРАВЛЕНИЯ

Так как самолёт STOL может летать на очень низких скоростях и предназначен для использования в неосвоенных районах, изобилующих препятствиями, управляемость самолёта на низких скоростях жизненно необходима. По моим наблюдениям, этот момент упущен из внимания во многих конструкциях лёгких самолётов с крылом большой подъёмной силы. Несмотря на то, что многие из этих самолётов имеют низкую скорость сваливания, пилот вынужден поддерживать значительно большую скорость, чтобы сохранить требуемую управляемость самолёта.

ЗАКРЫЛКИ, ЭЛЕРОНЫ И ФЛАПЕРОНЫ

Для решения указанной выше проблемы можно использовать флапероны - элероны, занимающие полный размах крыла, которые, кроме того, функционируют как закрылки. Использование полного размаха крыла обеспечивает флаперонам максимальную подъёмную силу, как закрылкам, и одновременно максимальную эффективность управления по крену, как элеронам. Такое совмещение функций достигается при минимальном весе конструкции посредством простого механического устройства смешанного управления.

Мы все знаем, что вблизи аэродинамической поверхности воздух замедляется из-за силы трения. Этот замедленный слой воздуха называется граничным слоем. Граничный слой становится более толстым при движении от передней кромки аэродинамической поверхности к задней. Другим фактором, влияющим на толщину граничного слоя, является так называемый эффект Рейнолдса, в силу которого, чем медленнее полёт, тем толще становится граничный слой. Сила трения и эффект Рейнолдса приводят к образованию граничного слоя толщиной примерно 0,5” (12 - 13 мм*) вблизи задней кромки крыла с хордой 4-5 футов (1,2-1,5 м*), сконструированного для полётов на низких скоростях.

Обычные закрылки или элероны, таким образом, имеют очень низкую эффективность в диапазоне отклонений 1 - 2 градуса, поскольку отклонение происходит в этом не очень активном аэродинамически граничном слое. Чтобы предотвратить снижение управляемости, флаперон можно сконструировать как отдельное маленькое крыло, движущееся вне граничного слоя собственно крыла и увлекаемого крылом потока воздуха. Такая система флаперонов (часто называемая флаперонами типа Юнкерса или щелевыми*) эффективна даже при больших углах атаки, так как расположена под крылом и поэтому продолжает получать «свежий» невозмущённый воздух, даже когда крыло находится на экстремальном угле атаки (См. рис. 8).

Рис. 8 - Граничный слой
Рис. 8 – Граничный слой

ГОРИЗОНТАЛЬНОЕ ОПЕРЕНИЕ

Кроме того, поскольку крыло с высокой подъёмной силой сконструировано для полётов с необычно большим диапазоном углов атаки (до 30 градусов по сравнению с 15-17 градусами для обычного крыла), для достижения таких углов требуется дополнительное усилие, толкающее хвост вниз. Не имея возможности строить горизонтальное оперение увеличенной площади, мы оказываемся перед необходимостью придать ему большой отрицательный коэффициент подъёмной силы. Это достигается с одной стороны с помощью перевёрнутого аэродинамического профиля стабилизатора, а с другой – с помощью дополнительного эффекта Вентури (или Бернулли*). Как известно, эффект Вентури создаёт пониженное давление и более высокую скорость в сужающемся сечении. Такое сужение образуется, если передняя часть отклонённого руля высоты выступает над поверхностью стабилизатора, как показано на рис. 9*.

Рис. 9 Эффект Вентури
Рис. 9 – Эффект Вентури

С одной стороны, пониженное давление увеличивает эффективность отклонения руля высоты, с другой - возросшая скорость воздушного потока снижает тенденцию к отрыву отклонённого воздушного потока от поверхности руля высоты*.

РУЛЬ НАПРАВЛЕНИЯ

В моих конструкциях самолётов STOL я использовал такой же цельноповоротный киль (руль направления), который я использовал во многих моих ранних моделях, так как он обеспечивает исключительно эффективное противодействие боковому ветру. Что касается конструкций STOL, когда скорость бокового ветра выше, чем скорость сваливания самолёта (это действительно случается), вы можете просто развернуть самолёт в сторону ветра и буквально подняться вертикально (даже развернувшись поперёк взлётной полосы)! Другое преимущество киля - он физически меньше, чем традиционное вертикальное оперение с отклоняемым рулём направления, а следовательно, легче; его легче конструировать и строить, поскольку он состоит из одной части. Он также облегчает выход из штопора за счёт большей фактически отклоняемой поверхности. Сам руль направления имеет полноценный симметричный аэродинамический профиль (а не является только плоской «доской»), что увеличивает его эффективность и расширяет её диапазон в сторону низких скоростей.

Плоскости крыла самолётов STOL плавно уменьшаются у корневой части, чтобы воздушный поток от пропеллера мог беспрепятственно обдувать хвостовое оперение. Положение оперения над фюзеляжем также улучшает его обдув потоком от пропеллера и увеличивает управляемость на низких скоростях, по сравнению с пониженной управляемостью на таких режимах в случае обычной конфигурации.

КОРОТКИЙ ВЗЛЁТ И ПОСАДКА

Для оптимального осуществления короткого взлёта необходим большой угол атаки на земле или около земли, и нам, соответственно, необходима общая конфигурация самолёта, позволяющая достичь такого угла атаки. Этого можно добиться, либо используя очень длинные основные стойки шасси в конфигурации с хвостовым колесом (поднимая нос), либо, поднимая заднюю часть фюзеляжа при трёхколёсной конфигурации.

Рис. 10 - Конфигурация шасси
Рис. 10 – Конфигурация шасси

В конфигурации c хвостовым колесом вся кабина оказывается неудобно наклонена по отношению к земле, а длинные стойки шасси делают конструкцию непрочной и тяжёлой. Также затрудняется доступ к кабине, особенно для пассажиров и груза, и серьёзно ухудшается передний обзор на земле при выруливании и взлёте.

Рис. 11 - Наклон кабины
Рис. 11 – Наклон кабины

Большинство пилотов в наши дни считают более удобной и безопасной трёхколёсную конфигурацию шасси, и почти все учебные самолёты трёхколёсные. Трёхколёсное шасси очень устойчиво при движении по земле, в то время как шасси с хвостовым колесом менее устойчиво и требует постоянного управляющего воздействия, особенно в условиях бокового ветра. Этот момент, кстати, отражают и страховые ставки на самолёты.

Крыло самолёта с трёхколёсным шасси имеет нейтральный угол атаки при нахождении на земле, в то время как у самолёта с хвостовым колесом оно имеет угол атаки для максимальной подъёмной силы (См. рис. 12). Самолёты с хвостовым колесом поэтому более чувствительны к ветру при движении по земле и более подвержены воздействию ветра на открытой стоянке (там самолёт проведёт большую часть своего срока службы, за исключением нахождения в ангаре).

Несмотря на многие преимущества трёхколёсной конструкции шасси, конфигурация с хвостовым колесом используется как во многих старых моделях, так и во многих современных моделях самолётов STOL, в основном из-за отсутствия технологий и опыта постройки лёгких и прочных конструкций с носовым колесом, и недостатка опыта разработки конструкций шасси или интереса к ним у многих сегодняшних конструкторов.

Эксплуатация во внеаэродромных условиях предполагает, что самолёты STOL должны иметь прочную и толерантную к грубым воздействиям конструкцию шасси. Шасси является наиболее слабым местом многих моделей лёгких самолётов, что делает их зависимыми от взлётно-посадочных полос с покрытием, несмотря на способность взлетать и садиться на короткой дистанции.

Рис. 12 - Шасси
Рис. 12 – Шасси

В моих моделях STOL я использовал простую двояко изогнутую пружинящую балку в качестве опоры основного шасси. Хотя это не самая лёгкая конструкция шасси, она отлично приспособлена для неподготовленных площадок, особенно в сочетании с большими колёсами, очень прочна, проста и практически не требует технического обслуживания. Стойка носового колеса управляемая, напрямую связанная с педалями руля направления. Для амортизации используется одиночный усиленный эластичный жгут (bungee). STOL CH 801 перенял конструкцию носового шасси у ZENITH CH 2000, моей серийной модели учебного самолёта, имеющей сертификат типа. Колеса основного шасси оснащены индивидуальными гидравлическими дисковыми тормозами, активируемыми нажатием конца ступни (toe brakes), обеспечивающими исключительную наземную управляемость. Практика показала хорошую пригодность такого устройства шасси для травяных полей, как и пригодность для пилотов с ограниченным временным ресурсом. (Износ носовой стойки и колеса минимизирован путём уменьшения давления на носовое колесо под действием момента от горизонтального оперения, что является особенностью моих конструкций самолётов STOL.

ФЮЗЕЛЯЖ

Прямоугольная кабина обеспечивает максимум удобного пространства для пассажиров и груза. Кабина четырёхместного STOL CH 801 достаточно длинная, чтобы в ней можно было установить носилки вдоль правого борта на сложенное сидение второго пилота и оставить при этом адекватное пространство для пилота и одного пассажира. Два ящика объёмом до 50 галлонов (0,2 куб м*) можно перевозить в хвостовой части. Естественно, STOL CH 801 является практичным спортивным самолётом, имеющим достаточно внутреннего пространства для ночёвки двух человек и более чем достаточно места для багажа во время продолжительного внеаэродромного путешествия. Двухместный STOL CH 701 на удивление просторен для самолёта такого размера и веса.

Возможно, не являясь самым эстетически привлекательным, прямоугольный фюзеляж очень прост в постройке и улучшает курсовую устойчивость, а также дополнительно противодействует штопору из-за плоских поверхностей и прямых углов.

КАБИНА/ОБЗОР

Удобство обзора для пилота и пассажира является важной характеристикой самолёта, но она часто игнорируется разработчиками. Хороший обзор особенно необходим в самолётах STOL, когда пилоту необходимо видеть препятствия при полёте над дикой местностью. Пассажирам также нужен хороший обзор, чтобы наслаждаться низким и медленным полётом. Они не хотят довольствоваться маленьким иллюминатором, как в коммерческом лайнере.

Хотя открытая кабина предоставляет беспрепятственный обзор, но наличие насекомых, ветра, холодного воздуха обуславливают необходимость закрытой кабины для современного самолёта, чтобы обеспечить минимальный привычный для человека уровень комфорта. Закрытая кабина также делает возможной хорошую вентиляцию и отопление, защищает электронное оборудование и багаж. Большие двери делают возможным лёгкий доступ в кабину для пассажиров и громоздкого багажа. Двери можно также снять для обеспечения максимальной видимости и ощущения полёта в «открытом воздухе».

Конфигурация с высокорасположенным крылом обеспечивает лучший обзор вниз, что позволяет наслаждаться видами при медленном и низком полёте и предоставляет пилоту возможность видеть и уклоняться от препятствий, что необходимо при полётах в дикой местности. В моих конструкциях STOL консоли крыла также дополнительно приподняты над кабиной. При этом также расширяется горизонтальная видимость. Также уменьшение толщины крыла в районе центроплана позволяет сделать эту часть стеклянной и создать обзор вверх. Застеклённая крыша кабины желательна для обзора пилота в высокоманёвренном самолёте.

Рис. 13 - Внешний обзор
Рис. 13 - Внешний обзор
Сужающееся к корневой части крыло в сочетании со стеклянным потолком обеспечивают хороший обзор. Дизайн крыла минимизирует встречную поверхность в воздушном потоке за винтом, улучшает лётные качества, обеспечивает прямой поток воздуха от пропеллера к оперению, способствует превосходной управляемости при медленном полёте.

Дополнительным преимуществом этой конфигурации с сужающимися консолями крыла над кабиной, помимо обзора, является меньшая встречная поверхность, что означает меньшее лобовое сопротивление (большую скорость при той же мощности), и отличная управляемость на низких скоростях, так как воздух беспрепятственно направляется от пропеллера к хвосту.

STOL CH 750
Сидения экипажа рядом: передний обзор

Как в большинстве современных самолётов, я использовал расположение сидений рядом, чтобы обеспечить пилоту и пассажиру максимальный комфорт. Кроме того, кабина обладает достаточной эргономичностью для обеспечения максимального удобства и эффективности действий пилота. Внутренне кабина STOL CH 801 выполнена так, чтобы обеспечить комфорт для четырёх крупных взрослых человек. При этом она может быть легко переоборудована для перевозки груза. Большие двери на каждой стороне обеспечивают лёгкий доступ в кабину с обеих сторон. Регулируемые передние сиденья складываются вперёд и обеспечивают лёгкий доступ к задним сиденьям /грузовому отсеку. Если предполагается такое назначение, задний отсек может быть преобразован для размещения груза, включая ящики объёмом до 50 галлонов (0,2 куб м*), или кабина может быть переделана под лежачее место (пациент на носилках) на месте переднего и заднего сидения с правой стороны, с пилотом на левом переднем сиденье и врачом или сопровождающим на левом заднем сиденье. Пилоты-путешественники могут в буквальном смысле слова разбить лагерь в STOL CH 801.

ПРОЧНОСТЬ ЦЕЛЬНОМЕТАЛЛИЧЕСКОЙ КОНСТРУКЦИИ

Самолёты, используемые в диких местностях, должны быть прочными, надёжными и иметь простое техническое обслуживание. Термин “полевое обслуживание” приобретает новое значение, когда пилоту в буквальном смысле слова необходимо осуществить базовое техническое обслуживание и ремонт, что называется, в чистом поле.

Основываясь на своём более чем 30-летнем опыте проектирования и постройки цельнометаллических самолётов, а также более чем 60-летнем опыте работы в промышленности с несущей обшивкой и конструкциями типа полумонокок, я выбрал для обоих самолётов STOL CH 701 и STOL CH 801 цельнометаллическую конструкцию. Несмотря на всё увеличивающееся количество новых современных материалов, вполне традиционные конструкции из алюминиевых сплавов не собираются устаревать и являются отличным выбором для конструктора.

Алюминиевые сплавы имеют следующие преимущества:

  • хорошие прочностные характеристики при небольшом весе
  • устойчивость к коррозии, особенно при использовании новейших сплавов и современных покрытий
  • низкую стоимость и широкую доступность
  • проверенную надёжность и устойчивость к воздействию солнца и влаги
  • наличие обширных эмпирических данных о свойствах
  • лёгкость обращения: инструменты и процессы достаточно просты, не требуют специальных температурных режимов, обеспыленной среды, как в случае композитных материалов. Современные вытяжные заклёпки значительно упростили сборку цельнометаллической конструкции самолёта из кита
  • пластичность: возможность лёгкого придания различной формы, практически без ограничения
  • большую экологическую безопасность: нет опасности для здоровья при работе с листовым металлом, пригодным также и для переработки
  • лёгкость проведения осмотра: дефекты и повреждения материала или конструкции хорошо заметны
  • лёгкость ремонта: заклёпки можно легко удалить, чтобы заменить поврежденные части или узлы; отдельные части можно заменить без полной замены целой секции корпуса летательного аппарата

Таким образом, конструкции из алюминиевых сплавов отлично подходят для самолётов, используемых в диких местностях: 1) допускают продолжительное хранение на открытом воздухе, 2) прочны и надёжны, 3) их легко осматривать, осуществлять техническое обслуживание и ремонт в полевых условиях. Например, простая заплатка из листового металла может быть приклёпана на повреждённый участок, и самолёт может долететь до аэропорта базирования.

Хорошо сконструированный самолёт из листового металла обладает повышенной безопасностью при столкновениях с препятствиями, так как энергия столкновения поглощается последовательной деформацией металлической конструкции, в отличие от раскалывания или раздробления от удара. Шасси моего STOL поглощает много энергии. Поэтому требуется гораздо больше энергии, чтобы «вырвать » их. И даже после этого алюминиевый каркас с несущей обшивкой нуждаются в гораздо большей энергии, чтобы начать гнуться, коробиться и скручиваться. Прочная рама кабины защитит пассажиров даже при маловероятном капотировании самолёта с трехколёсным шасси, а консоли крыла, расположенные гораздо выше, чем головы пассажиров, дополнительно поглотят энергию удара. Ещё одно важное преимущество, часто игнорируемое, это хорошая защита от грозовых разрядов, которая обеспечивается металлической конструкцией.

Для меня, как для авиационного инженера, очень легко сконструировать сложный летательный аппарат и более сложно создать простой. Чтобы кит воздушного судна был успешен, от должен быть относительно простым в плане конструкции, сборки и оборудования. Простая конструкция не только легка и доступна для постройки, она также более пригодна для постройки самодельщиком, поскольку уменьшает вероятность ошибок и последствия плохого качества работы. Для простой конструкции время постройки будет меньше, потребуется меньше инструментов и практических навыков, чем для сложных проектов. После окончания постройки такой самолёт будет легче эксплуатировать и обслуживать. Простое оборудование максимизирует надёжность, при этом минимизируя объём работы пилота. В течение 24 лет опыта разработки и производства китов для самодельщиков , мы научились конструировать самолёты именно для самодельщиков и спортивных пилотов, предлагая им полностью укомплектованные киты, которые собираются легко, с минимумом инструментов и практических навыков.

В соответствии с принципом, в силу которого форма обуславливается функцией, мои две разработки самолётов STOL имеют свою специфическую красоту, которая больше, чем просто внешняя красота, для того, кто разбирается в аэродинамических и конструктивных особенностях, которыми обладают эти разработки, и которые делают их высокоэффективными самолётами с коротким взлётом и посадкой, которые при этом легко строить и обслуживать и которые обладаают высокой надёжностью и универсальностью.

Первоначальный STOL CH 701 и новый STOL CH 750 обладают отличными эксплуатационными данными, возможностью внеаэродромной эксплуатации, лёгким весом и очень экономичным двухместным дизайном. На них легко и приятно летать. В то время как новый STOL CH 801 действительно практичный спортивный самолёт с полезной нагрузкой в 1000 фунтов (около 450 кг*).

cfbdz.jpg (33426 bytes)
Фотография реального короткого взлёта

Для меня как разработчика - действительно награда, видеть, как мои разработки применяются по всему миру для выполнения гуманитарных миссий на удалённых территориях, а также читать в письмах пилотов, что самолёт «стартует как пробка из бутылки шампанского»!


*Примечание/адаптация переводчика

По материалам сайта www.zenithair.com

 

 

Наши друзья